A Review of Attacks Against Language-Based
Package Managers

Aarnav M. Bos
CODE University of Applied Sciences
Berlin, Germany
aarnav.bos@code.berlin

Abstract

The liberalization of software licensing has led to unprecedented re-
use of software. Alongside drastically increasing productivity and arguably
quality of derivative works, it has also introduced multiple attack vectors.
The management of software intended for re-use is typically conducted by
a package manager, whose role involves installing and updating packages
and enabling reproducible environments. Package managers implement var-
ious measures to enforce the integrity and accurate resolution of packages to
prevent supply chain attacks. This review explores supply chain attacks on
package managers. The attacks are categorized based on the nature of their
impact and their position in the package installation process. To conclude,
further areas of research are presented.

1 Introduction

Projects that reuse software may benefit from abstractions to common, complex
problems, functionality that is written with established standards in mind, and
faster time to market [1]. As projects evolve and dependencies grow, the manual
management of dependencies across mutiple systems becomes increasingly com-
plicated. Package managers facilitate reproducible environments, the installation,
updating and removal of software artefacts [2].

Package managers have become essential to software engineering, so much

so that languages such as Python [3], Go [4], Rust [5] and Javascript [6] provide
them as a core piece of their language suite. With developers opting to use even
the most trivial packages[7], the significance of package managers makes them
attractive targets for attackers.
A software supply chain encompasses all parties and processes involved in con-
structing and delivering a final software product [8]. This includes but is not lim-
ited to, package managers, package repositories, package developers and main-
tainers of package repositories. The recent demonstrations of high impact attacks
on package managers such as pip, Bundler and Yarn [9, 10], which allowed at-
tackers to discreetly install incorrect packages, ushered package managers into
the spotlight, highlighting their importance in the supply chain.

This review’s contribution is an overview of supply chain attacks on pack-
age managers. It demonstrates three different families of attacks: Package Injec-
tion, where an attacker’s goal is to install unintended packages, Denial of Service,
where an an attacker’s goal is to cause disruption in service and Code Injection,
where an attacker’s goal is to execute arbitrary code. Build scripts are excluded
as an attack vector due to the nature of build systems allowing network access,
file system access and code execution. This review also assumes that package
repositories are secure and not operated by malicious parties.

2 Overview of Package Installation

The package installation process is separated into five different parts to catego-
rize attacks distinctly. To install or update a package, a package manager queries
the repository for metadata and attempts to find a matching version considering
project constraints. If a matching version is found, it fetches, extracts and installs
the artefacts. If configured, the package manager appends package metadata to its
lockfile, a file tracking a list of packages and their metadata to enable reproducible

environments.

2.1 Resolution

When a user requests their package manager to install a package, the package
manager queries remote repositories to fetch meta-information about the package.
Packages are queried by their name, which is their unique identifier on repos-
itories. Considering constraints such as language version and existing package
installations, the manager attempts to calculate a compatible version of the pack-
age; factoring in its dependencies and sub-dependencies. A suitable version match
is not guaranteed. If a user is installing using a lockfile, the resolution step is not
necessary as the lockfile explicitly provides the resolution data. When updating
or removing packages, resolution is also required to make sure no other packages
are affected in case of shared dependencies.

2.2 Fetching

Depending on the results of resolution, package artefacts are fetched from a re-
mote repository or the local cache. The artefacts are typically zipped to save
bandwidth. The package manager unzips them and stores them. Some package
managers store packages in a directory that is accessible by all applications imple-
mented in the target programming language while others store it in a per-project
basis. Some can do both.

2.3 Verification

The verification of an installed package’s integrity and authenticity is crucial. The
verification of package integrity is typically done through a checksum, fetched
alongside package metadata. A hash function is run on the package to see if the
resulting checksum matches the one provided. In case of a Man In The Mid-
dle(MITM) attack, a false checksum can be provided, making integrity checking
insufficient to assert validity. One way to assert authenticity is done through the
use of public-key cryptography, where a package maintainer signs the provided
checksum which the package manager subsequently verifies.

2.4 Installation

After fetching package artefacts, depending on the language, and package, an
installation step is required. Packaging formats either implicitly or explicitly pro-
vide instructions on how to build and install a package in the form of a build script.
Alongside build scripts, some package managers support pre and post installation
scripts which are used to check for operating system dependencies, clean up build
artefacts or for fetching additional resources, amongst other things.

2.5 Acknowledgement

If a successful installation took place, a package manager acknowledges it by
informing the user. Some package managers, if configured, keep track of the
list of dependencies and their resolution information in the form of a lockfile.
The lockfile is automatically updated upon installation, updating or removal of
dependencies.

3 Attack Types

Attack Name Installation Step Family
Man In The Middle Fetching Package Manipulation
Misconfigured Integrity Check Verification Package Manipulation
Misconfigured Authenticity Check Verification Package Manipulation
Dependency Confusion Resolution Package Manipulation
Lockfile Tampering Resolution Package Manipulation
Zip-Bombs Fetching Denial Of Service
Predictable Build Artifacts Installation Denial Of Service
Command Injection All Code Injection

Table 1: Taxonomy of Attacks

The attacks are classified based on the position in the package installation process
and the outcome of exploitation.

3.1 Package Manipulation

A vulnerability in a package manager which an attacker can utilize to install an
unintended package is called Package Manipulation. Package manipulation can
occur when the authenticity and integrity of artefacts are not verified or if the
resolution of packages is done in an unpredictable manner.

With the fetching of package artefacts from remote repositories, there are at
least three ways a package manager can be vulnerable to an MITM attack [11]:

e If the transmission does not use SSL/TLS to secure communications, it can
be vulnerable to a IP-spoofing based MITM attack.

* If the validity of the SSL/TLS certificate used is not verified, it can be vul-
nerable to a SSL/TLS MITM Attack.

* If the validity of the response from the DNS server used to resolve the repos-
itory is not verified, it may be vulnerable to a DNS-spoofing based MITM
attack.

MITM attacks can enable an attacker to provide false or malicious package arte-
facts that are assumed to be legitimate by the package manager.

Correct verification of the authenticity and integrity of the package artefacts
is crucial. Invalid or absent verification of package artefacts’ authenticity and
integrity can allow an attacker to provide malicious artefacts, through an MITM
attack for example, which may be accepted as valid ones [12, 13].

Disagreements between parsers of data interchange formats such as JSON [14]
and XML [15] are of significant concern to package management [10, 16] as many
package managers use lockfiles to have predictable package resolution and repro-
ducible environments. Lockfiles are updated automatically and manual changes
are discouraged. Research by Johnson and Appelt [10], and Tal [16] highlight
how seemingly harmless manual changes to lockfiles can lead to package injec-
tion due to package managers parsing their lockfiles in an ambiguous or invalid
manner. Yarn, when provided with duplicated attributes in a package entry, takes
the last attribute [17]. For example:

corepack@”0.14.1:
version "0.14.1"
resolved "https://registry.com/"
duplicated field
resolved "https://malicious.registry.com/"
integrity shabl2-xyz
duplicated field
integrity shabl2-xyz-malicious

This allows an attacker to change the package source and integrity, allowing
them to install any package instead of the intended. Depending on the lockfile
format, modifications conducted when adding, updating or removing a package
can be large in terms of lines. Without extensive auditing, an application developer
may assume the changes to the lockfile as automatic and proceed to integrate them,
thus compromising their application.

Package managers must also be extremely cautious when updating the struc-
ture of package metadata, especially relating to dependencies as it has been known
to have unintended consequences. Cargo, for example, introduced functionality
which allowed projects to override dependency names by defining an alias for the
dependency in the project declaration file [18]. The feature would allow projects
to use the alias in place of the original name in their code; however, Cargo ver-
sions prior to the introduction of the feature parsed but ignored the alias. This
could allow attackers to find projects which utilize aliases and create packages
with those aliases on the package repository, leading anyone with an older version
of Cargo to fetch unintended packages [19].

Many package managers have a default public repository they query for pack-
ages when a user wants to install or update a package. They also allow users to
specify custom repositories as organizations and users may wish to have private
packages. Dependency Confusion is a vulnerability where package names from
private repositories are duplicated on public repositories, causing confusion in res-
olution for the package manager [9]. Pip and Bundler, for example, resolved to
whichever package had the highest version amongst it’s sources [20, 21], allow-
ing an attacker to trick the package manager into fetching their package over the
intended one.

3.2 Denial Of Service

A denial of service attack is an attack where the perpetrator attempts to cause
disruption in a service by attempting to disable acess to or exhaust a victim’s
computational resources [22]. This may include network bandwidth, memory,
storage or computing power. Package managers which do not limit the amount
of data they extract from compressed package artefacts can be vulnerable to a zip
bomb [23]. A zip bomb is a malicious archive file which can crash a computer by
overflowing its memory or disk space, or by putting excessive load on it’s CPU
[24].

Package managers may create temporary directories or files if necessary dur-
ing the package build process [25, 26, 27]. If the names of these artefacts are
predictable and if the package manager is unable to overwrite the file or directory,
it may lead to denial of service [28]. Furthermore, if package managers follow
symbolic links when creating predictable build artefacts, a malicious actor could
create symbolic links to sensitive files or directories[26, 25]; allowing them to cor-
rupt arbitrary files and potentially causing a denial of service attack. As such, a
cryptographically secure random name must be assigned to all temporary artefacts
to prevent such an attack.

3.3 Code Injection

Command injection is a subset of a Code Injection [29] attack where the perpe-
trator attempts to execute arbitrary commands on a victim’s computer by abusing
how an application executes shell commands [30]. It results from unsanitized
input [30]. Some package managers support a git [31] repository as a package
source. Since git is a command-line application, package managers use shell com-
mands to automate git processes. An attacker may provide a malicious URL for a
git repository which can lead to a command injection when utilized by the package
manager [32, 33]. As package managers deal with foreign input such as package
names, metadata and artefacts across all processes, rigorous sanitization must be
implemented to prevent command injection.

4 Conclusion

An overview of attacks on package managers, including proven demonstrations
is presented and the attacks are categorized by their outcome. Despite the im-

portance of package managers in the software supply chain, a lack of systematic
research is evident. The next steps in research could be:

* Reproducible environments - How do package managers parse and handle
lockfiles. Do they adhere to the interchange specification?

* A thorough overview of package verification processes implemented in pack-
age managers, their efficiency and potency.

* A modern taxonomy of package management

References

[1] L. Sommerville, Software engineering, en, 9th ed. Boston: Pearson, 2011,
pp- 426-430.

[2] P. Abate, R. DiCosmo, R. Treinen, and S. Zacchiroli, “Mpm: A modular
package manager,” in Proceedings of the 14th international ACM Sigsoft
symposium on Component based software engineering, 2011, pp. 179-188.

[3] Pip: The PyPA recommended tool for installing Python packages. [Online].
Available: https://pip.pypa.io/ (visited on 10/21/2022).

[4] Managing dependencies - The Go Programming Language, en. [Online].
Available: https://go.dev/doc/modules/managing—dependencies
(visited on 10/21/2022).

[5S] Cargo, original-date: 2014-03-04T23:20:42Z, Oct. 2022. [Online]. Avail-
able: https : / /github . com/ rust - lang/ cargo (visited on
10/21/2022).

[6] Npm - aJavaScript package manager, original-date: 2018-07-05T23:26:527Z,
Oct. 2022. [Online]. Available: https://github.com/npm/cli
(visited on 10/21/2022).

[7] R. Abdalkareem, V. Oda, S. Mujahid, and E. Shihab, “On the impact of us-
ing trivial packages: An empirical case study on npm and pypi,” Empirical
Software Engineering, vol. 25, no. 2, pp. 1168-1204, 2020.

[8] A.R.Nygard and S. Katsikas, “SoK: Combating threats in the digital sup-
ply chain,” in Proceedings of the 17th International Conference on Avail-
ability, Reliability and Security, ser. ARES *22, New York, NY, USA: Asso-
ciation for Computing Machinery, Aug. 2022, pp. 1-8, ISBN: 978-1-4503-
9670-7.DO1: 10.1145/3538969.3544421.

[9] A. Birsan, Dependency Confusion: How I Hacked Into Apple, Microsoft
and Dozens of Other Companies, en, Feb. 2021. [Online]. Available: https:
/ /medium. com/@alex .birsan/dependency—-confusion—
4a5d60fec610 (visited on 10/19/2022).

[10] G. Johnson and D. Appelt. “Picking Lockfiles: Attacking & Defending
Your Supply Chain.” (), [Online]. Available: https://www.blackhat.
com/eu-21/briefings/schedule/index.html#picking-
lockfiles——attacking--defending-your—-supply-chain-
24844 (visited on 10/21/2022).

[11] M. Conti, N. Dragoni, and V. Lesyk, “A Survey of Man In The Middle At-
tacks,” IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp. 2027—
2051, 2016, Conference Name: IEEE Communications Surveys & Tutori-
als, ISSN: 1553-877X. DOI: 10.1109/COMST.2016.2548426.

[12] A. Athalye, R. Hristov, T. Nguyen, and Q. Nguyen, “Package manager se-
curity,” Tech. Rep., 2014. [Online]. Available: https://pdfs.semanticscholar.
org/d398/d240e916079e418b77ebb4b3730d7e9590b15 . pdf
(visited on 10/19/2022).

[13] CVE - CVE-2013-1629. [Online]. Available: https://cve .mitre.
org/cgi-bin/cvename.cgi?name=CVE-2013-1629 (visited on
10/17/2022).

[14] N. Seriot, Parsing JSON is a Minefield. [Online]. Available: https://
seriot.ch/projects/parsing_json.html (visited on 10/17/2022).

[15] C. Spith, C. Mainka, J. Schwenk, and V. Mladenov, “SoK: XML Parser
Vulnerabilities,” en, p. 14,

[16] L. Tal, Why npm lockfiles can be a security blindspot for injecting malicious
modules — Snyk. [Online]. Available: https: //snyk.io/blog/
why —npm-lockfiles—-can—-be-a-security-blindspot -
for-injecting-malicious—-modules/ (visited on 10/17/2022).

[17] “GitLab.com / GitLab security department / security research / lockfile-
tampering-examples - GitLab,” GitLab. (), [Online]. Available: https :
//gitlab.com/gitlab—-com/gl-security/security-
research/lockfile-tampering—examples (visited on 11/18/2022).

[18] “Announcing rust 1.31 and rust 2018 — rust blog.” (), [Online]. Available:
https://blog.rust-lang.org/2018/12/06/Rust-1.31-
and-rust-2018.html#cargo—features (visited on 11/16/2022).

[19] Cargo prior to Rust 1.26.0 may download the wrong dependency, en. [On-
line]. Available: https : / / github . com/ rust — lang / rust /
security/advisories /GHSA-phjm—-8x66 - qw4dr (visited on
10/19/2022).

[20] CVE - CVE-2018-20225. [Online]. Available: https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2018-20225 (visited
on 10/17/2022).

[21] CVE - CVE-2020-36327. [Online]. Available: https://cve.mitre.
org/cgi-bin/cvename.cgi?name=CVE-2020-36327 (visited
on 10/17/2022).

[22] A. Hussain, J. Heidemann, and C. Papadopoulos, “A framework for classi-
fying denial of service attacks,” in Proceedings of the 2003 conference on
Applications, technologies, architectures, and protocols for computer com-
munications, ser. SIGCOMM ’03, New York, NY, USA: Association for
Computing Machinery, Aug. 2003, pp. 99-110, ISBN: 978-1-58113-735-
4. DOI: 10.1145/863955. 863968. [Online]. Available: https :
//doi.org/10.1145/863955.863968.

[23] Extracting malicious crates can fill the file system, en. [Online]. Avail-
able: https://github.com/rust-lang/cargo/security/
advisories/GHSA-2hvr-hegw—-qrxp (visited on 10/19/2022).

[24] Zip bomb, en-US. [Online]. Available: https : / / encyclopedia .
kaspersky.com/glossary/zip—bomb/ (visited on 11/10/2022).

[25] Extracting malicious crates can corrupt arbitrary files - Advisory - rust-
lang/cargo. [Online]. Available: https : / / github . com/ rust -
lang/ cargo/ security/advisories /GHSA-rfj2—-g3h3 -
hm5 7 (visited on 10/19/2022).

10

[26] CVE - CVE-2013-1888. [Online]. Available: https://cve .mitre.
org/cgi-bin/cvename.cgi?name=CVE-2013-1888 (visited on
10/17/2022).

[27] Go command - cmd/go - Go Packages. [Online]. Available: https: //
pkg.go.dev/cmd/go#hdr-Build_and_test_caching (visited
on 11/10/2022).

[28] CVE - CVE-2014-8991. [Online]. Available: https://cve .mitre.
org/cgi-bin/cvename.cgi?name=CVE-2014-8991 (visited on
10/17/2022).

[29] “Code injection — OWASP foundation.” (), [Online]. Available: https:
//owasp.org/www—community/attacks/Code_Injection
(visited on 11/13/2022).

[30] Command Injection — OWASP Foundation, en. [Online]. Available: https:
//owasp.org/www-community/attacks/Command_Injection
(visited on 11/10/2022).

[31] “Git.” (), [Online]. Available: https://git—-scm.com/ (visited on
11/13/2022).

[32] “CVE - CVE-2022-36069.” (), [Online]. Available: https : / / cve .
mitre.org/cgi-bin/cvename.cgi?name=CVE-2022-36069
(visited on 11/13/2022).

[33] “Local code execution through argument injection via dash leading git url
parameter in gemfile,” GitHub. (), [Online]. Available: https://github.
com/ rubygems / rubygems / security /advisories / GHSA -
f§7f-vg84—-fh43 (visited on 11/13/2022).

11

